Mockup Review

Pallet Dampener

Design Concept

A portable shock absorber set for large item deliveries on pallets to minimize

the amount of damaged items.

Goal:

- Significantly reduce the amount of items broken during delivery.
- 21% of people had a large item they purchased **arrive** damaged.

Market:

• More than **1000 large-item shipping companies** in Massachusetts.

Target Audience:

- Art Movers in Boston
- Appliance Dealers
- Large-item shipping company

Critical Questions

Clamping Mechanism	Dampening System
Can it be easily attached and removed?	Is the damping force enough to handle large loads?

Implementation

Non-Exploded

Exploded

Remaining Concerns

- What damping force is necessary?
 - Is it solved? Is it still a concern?
- How does it scale?
 - Is it repeatable? What happens if one fails?
- Can it fit all standard pallets?
- Is moving the clamp to above the assembly necessary?
- Can we make it easier to clamp on without losing functionality?

Sea Turtle Incubator

Design Concept

• An incubator deployed on the beach that **cools sea turtle nests**

Goal:

 Rectify the sex ratio imbalance caused by rising global temperatures

Market:

• 10% of sea turtle conservation grants in the US = **\$1.5 million** annually

Key Features:

- Easy Deployment: flange attachments and handle
- Cooling Method: (1) passive cooling: reflective cover
 (2) pative cooling: reflective cover
 - (2) active cooling: water pump, heat exchanger

Critical Questions

Cooling	Deployment in	Energy	Power Concerns
Methods	Sand	Consumption	
Can we combine passive/active cooling methods?	Can we utilize the cylindrical shape for screw structure to achieve easier deployment?	Can we build simulation model to calculate power and energy consumption?	How should we power the system ?

Cooling Methods

Can we combine passive/active cooling methods?

Passive Cooling

Definition: using **design choices** to reduce heat gain and increase heat loss

Reflective Cover

- Avoid direct sunlight
- Create shade
- Previous research shows shading can cool 1-1.9 °C

Active Cooling

Definition:

a **heat-reducing mechanism** that ensures proper heat transfer and circulation from within

Replace cooler

- Keep water pump
- Exploring possibility of heat exchanger and refrigeration system

Deployment in Sand

Can we utilize the cylindrical shape for **screw structure**?

Easier Deployment

Handle

- Easy to rotate
- Better grip

Flange Screwing Mechanism

- Inspired by beach umbrellas
- Average Force exerted
 83.5 N required to submerge
 13" into sand

Energy Consumption

Can we build simulation model to **calculate heat transfer** and **energy consumption**?

Temperature gradient

- Convection from 33°C ambient air
- Better understanding of thermal properties of sand
- Refine the model to fit different solutions

Power Concerns

How should we power the system?

Power Requirement

- 18 W
- Reasonable for solar panels
- Implement in reflective roof

Calculations

$$q_{s} = \frac{k(T_{s} - T_{0})}{(\pi \alpha t)^{1/2}} \qquad A = \pi DL$$
$$q_{s} = 18 \frac{W}{m^{2}} \qquad A = 1 m^{2}$$

Remaining Concerns

Powering Active Cooling

- Heat exchanger
- Water pump

Expandable Shoe

Product Vision

Critical Questions: Shoe Standards

What shoe size for ages 1-5?

- Expand from US children's shoe size 5 to 11
- Expand 2-5 times a year

How do we benefit foot/walking development?

- Toe must be flexible
- Flat sole, no arch
- Lightweight

Critical Design Questions

- How do we How do expand/ contract the sole?
 - parents/ manipulate the shoe?
- How do we make the shoe weatherproof?
- How do we make the shoe durable?

Key Findings

- The **aspect ratio** and **shape** of the **auxetics** can be adjusted to manipulate how the sole expands and contracts
- Velcro + stiff fabric provides adjustable structure
- A mechanical advantage in our winching system of at least 1.5 is necessary to accomplish contraction of the structure without strenuous user input
 - may change with varying material and auxetic selection

Remaining concerns

- Material & Auxetic Shape selection
- Testing
 - \circ Fatigue
 - Durability
 - Hydrostatic load
- Component Integration